
155information technology and communication 2005 NRL Review

Scalable High-Assurance
Technology for Detecting
Compromised Host Computers

J. McDermott, W. Snook, and J. Luo
Information Technology Division

Rootkits: Th e most common use of deceptive
interpreters is in association with a rootkit. After
attackers gain root or administrative access to the
system, they can install malicious tools including back-
doors, sniff ers, and tools to cover their tracks. Th ese
tools will run with root privilege and have the ability
to fully control the system. However, backdoors and
sniff ers by themselves tend to have large signatures that
could be easily detected. What makes rootkits excep-
tionally dangerous is the incorporation of deceptive
interpreters that hide their presence. Deceptive inter-
pretation can fool both automated tools and human
system administrators into thinking their systems are
safe. Th ey enable a rootkit and its malicious payload to
operate for an extended period of time, thus drastically
prolonging the system compromise and escalating the
damage.

Th e constant stream of new security vulnerabilities
demonstrates that much of our technology is exploit-
able and at risk from deceptive interpretation. To
inject deceptive interpretation into a military informa-
tion system, it is only necessary to tamper with one
link in the entire chain of computation (Fig. 1); pre-
venting deceptive interpretation requires every link to
be made tamper-proof. On the other hand, the eff ort
for detecting deceptive interpretation is somewhere in
the middle of those two extremes. Successful detection
depends on monitoring the link that gets tampered
with and recognizing that the tampering has occurred.
Th e fundamental consequence of deceptive interpreta-
tion is that the host can no longer be trusted to inspect
itself. A new technology is needed.

FIGURE 1
Tampering with the chain of computation.

Deceptive Interpreters: For military and other
national security systems, the problem we are con-
cerned with is deceptive interpretation. Th e problem
of deceptive interpretation occurs when some portion
of a computer system is modifi ed to present a false
picture of reality.1 A deceptive interpreter is a mali-
cious agent that is capable of observing and changing
the results of computations on its host system, accord-
ing to a predefi ned strategy. Deceptive interpreters are
able to change inputs for commands, the sequence
of commands executed, or the information returned
by computation in a way such that their policies are
enforced.

Deceptive interpreters are analogous to the refer-
ence monitor concept for access control. Th e diff er-
ence is that reference monitors are benefi cial security
mechanisms that enforce legitimate policies on the
system. Deceptive interpreters, on the other hand,
enforce malicious policies (which we call strategies) to
the detriment of the host system. Another diff erence
is that a deceptive interpreter must not be detected.
A necessary strategy for any deceptive interpreter is
that the deceptive interpreter itself must be hidden.
Reference monitors can simply adopt fail-stop policies
to exert control over systems; any request that violates
the policy can be rejected and reported. Deceptive
interpreters, on the other hand, cannot reveal their
presence and must provide responses that appear
legitimate. Th e originator of the legitimate commands
must be misled without realizing it.

Introduction: Explosive improvements in com-
mercial computer technology and tight budget
constraints have driven the military to use commod-
ity operating systems as the foundation for its latest
information technology. Unfortunately, the ability of
commodity operating systems to protect themselves
has not greatly improved. (Commodity systems are
defi ned as those that are both widely available and
widely used.) As a result, it is diffi cult to build an
information system that can protect military data
according to its criticality and value. Additional tech-
nology is needed to strengthen the security infrastruc-
ture of military information systems. Th e problem we
are addressing here is not one of nuisance attacks such
as the viruses reported by the news media.

Secure Attention Instruction: NRL researchers
have focused on tamper-resistant hardware, software,
and cryptographically protected means of detecting
unauthorized modifi cations to commodity operating
systems. Th e secure attention instruction concept pro-
vides a scalable infrastructure for detecting and report-

156 2005 NRL Review information technology and communication

ing compromised network hosts. Th is will provide a
high-assurance security foundation for information-
grid-based military systems.

A secure attention instruction can be a machine
language operation code, an interpreted byte code, or a
system call. In any of these forms, the eff ect is to cause
the secure attention instruction (SAI) processor to
perform a safety check of the host computer’s software.
Th e results of this check are signed by the SAI proces-
sor, using a cryptographic key that is protected inside
the SAI processor. Th e results returned by the instruc-
tion cannot be used on the host computer that is pro-
tected by the secure attention instruction; a deceptive
interpreter could tamper with that use. However, the
results of a secure attention instruction can be checked
on another host that is known to be secure. If this
trusted host (called a mint) has the proper keys, it can
confi rm and report the authenticity of the results. If
the safety check fails, security measures can be invoked
to isolate, remove, or otherwise deal with the decep-
tive interpreter. If the mint sets a timer for each secure
attention instruction that it creates, it can use the
corresponding time-out event as a notifi cation that the
instruction may have been discarded by a deceptive
interpreter. Security measures may be invoked on this
time-out. Finally, since the secure attention instruction
processor protects the keys it uses to authenticate the
results, the deceptive interpreter cannot forge a result.

Figure 2 illustrates most of the key concepts
needed to eff ectively construct a scalable secure atten-
tion instruction infrastructure. Part (a) shows all the
components needed to use secure attention instruc-
tions in a simple network having a hierarchy of secu-
rity domains. Part (b) is loosely structured as a unifi ed
modeling language (UML) collaboration diagram;
it lists all the interactions involved in executing one
secure attention instruction.

We begin by describing the objects shown in Fig.
2(a) moving clockwise from Mint P at the top. Mint P
is a mint because it can create secure attention instruc-
tions that are a bit like currency in the sense that they
are hard to forge. Because the fi gure includes three
mints, we give each mint a name corresponding to its
security domain; “P” is the label for the root domain
of the entire network. Th e key in each mint represents
the cryptographic material that allows the mint to
create authenticatable and secret secure attention
instructions. In the context of this section, we defi ne
a secure attention instruction as the string of bits that
results when a mint applies a cryptographic function
to a command such as x, y, or z. In the future, we plan
to publish a description of the cryptographic exchange
between a mint and an SAI device, but for now we
assume that the protocol has already been established.
Each mint also implements a policy of some sort to
regulate the creation of secure attention instructions.

Access Matrix

P

yx z

Q

Cert. P

Cert. Q

SAI Processor Q

Host P

Network

Access Matrix

P

yx z

R Cert. R

Host R

SAI Processor R

PCert.

Administration

Client Q

Policy

Mint Q (subdomain Q)

Database

Client Q

Client R

Administration

Grid

Client R

Policy

Mint R (subdomain R)

R

Policy

Mint P (root domain)

P

Mint R

Grid Client R

7) verify({digest(results).y.fail}k)

Host R

3) do_work(task, {y}k)

6) results.{digest(results).y.fail}k)

SAI Processor R

4) do_SAI({y}k, digest(results))

5) {digest(results).y.fail}k

2) {y}k

Deceptive

Interpreter

Q

1) create_SAI(y)

8) digest(results).y.fail

FIGURE 2
Key concepts for secure attention instructions.

157information technology and communication 2005 NRL Review

Because Mint P is the root mint, it is not connected
to the network, and its policy is to only create secure
attention instructions for a small number of root
domain administrators. Th e root mint does not create
secure attention instructions often. When it does, the
instructions contain commands for key management
and other sensitive operations. We are making the
assumption that the mint is trusted, and that it uses
one of the many existing mechanisms to authenticate
the administrators.

Next, Administration Client R represents the
process (or computer) that the administrator for sub-
domain R uses to monitor and confi gure SAI proces-
sors within subdomain R.

Mint R has a diff erent domain and policy than
Mint P, but it is otherwise very similar. Th e policy of
Mint R allows it to create two types of secure atten-
tion instructions, distinguished according to their
commands. Th e fi rst type, created only for subdomain
administrators, is used to confi gure SAI processors.
Th e second type, created for clients in the subdomain,
implements the true purpose of the secure attention
instruction. It allows clients to bind the results of some
task performed on a remote computer to the results
of a deceptive interpretation scan performed on the
remote computer’s SAI processor. Th e other important
thing about the subdomain mint policy is that can
include a timer for each secure attention instruction.

Grid Client R represents a process that a normal
member of subdomain R uses to access grid comput-
ing services. Host R is a computer containing an SAI
processor and running some sort of network daemon
(such as Globus Toolkit). Th e computer is confi gured
with a device driver and other appropriate software
so that the daemon can interpret secure attention
instructions by passing them on to the the SAI proces-
sor. Also, the icon with “fangs” represents a deceptive
interpreter that has taken over a portion of the oper-
ating system on Host R in order to alter the results
produced by the daemon. Th e SAI processor within
Host R contains three interesting items. First, it has
a “Cert,” or certifi cate, for domain P and another for
subdomain R. Th e certifi cates contain cryptographic
material and other information allowing the SAI
processor to authenticate and decrypt secure attention
instructions minted by Mint P or Mint R. Th e third
item is an access matrix that the SAI processor consults
before carrying out commands. According to the
matrix, SAI Processor R will honor commands x and
y from Mint P, honor commands y and z from Mint
R, and refuse all other commands. After the the SAI
processor executes a command, it will typically return

a result that can be authenticated and encrypted by the
mint that issued the command.

Host Q, Administration Client Q, and Mint Q
are confi gured for subdomain Q; otherwise, they are
the same as their counterparts in subdomain R. Data-
base Client Q is used for accessing a database service;
otherwise, it is the counterpart of Grid Client R.

Figure 2(b) shows the basic exchange involved in
executing a secure attention instruction. As mentioned
earlier, the fi gure is loosely based on a UML collabora-
tion diagram. Th e labeled boxes correspond to items in
part (a) of the fi gure, and the lines between the boxes
indicate collaboration. Th e numbered lines of text rep-
resent messages with semantics similar to a function
call. Th e messages with parameters enclosed in “()”
are like function calls, and the other messages are like
return values. Each message starts with an arrow that
points to its destination, and the messages are placed
near their origin.

Th e secure attention instruction exchange pro-
ceeds in the following way. Grid Client R begins
by asking Mint R to create an SAI containing the
command y. (In an actual protocol implementation,
the intended SAI processor should be specifi ed here.
Many other precautions would also need to be taken,
so we use this simplifi cation here for the sake of clear
notation.) Mint R then responds with the SAI as
requested. Next, in message 3, the client instructs
Host R to perform a task and execute the SAI for y
when it is fi nished. Host Device R performs the task
and produces a result. Because the task specifi cation
included a description of the semantics for y, the host
device took a digest of its results and passed them
with the SAI to the SAI processor (message 4). Th e
SAI processor performed command y which detected
the presence of a deceptive interpreter in Host R. Th e
processor then cryptographically bound its results
to the host’s digest and dispatched message 5. Next,
the host appended the SAI result to its full task result
and sent message 6 back to the client. Th e client
extracted the SAI result and asked the mint to verify
it in message 7. Upon receiving the message, the mint
stopped the corresponding timer, noted the deceptive
interpreter, and returned the digest and the result of y
to the client. Finally, the client recalculated the digest
and considered the result of the SAI. By using the SAI
infrastructure, the client determined that the results
were generated on the computer containing SAI Pro-
cessor R and that they were not trustworthy because a
deceptive interpreter was present.

NRL’s proof-of-concept prototype will demon-
strate the feasibility of integrating secure attention

158 2005 NRL Review information technology and communication

instructions with host safety checks or scans. It will
also prototype the scalable infrastructure needed to
mint, confi rm, and manage secure attention instruc-
tions.

Because we have limited resources, we chose to
implement our prototype as a PCI-bus peripheral
protecting the open-source Linux kernel. Intelligent
peripherals have the necessary local processing power
and interface restriction capabilities to be relatively
omniscient (as bus masters) but tamper-resistant.
An Intel IQ80310 prototyping board provides these
features and saves hardware prototyping eff ort.

[Sponsored by ONR]

References
1 G. Karjoth and J. Posegga, “Mobile Agents and Telcos

Nightmares,” Annales Telecommun, 55(7/8), 29-41 (2000).

